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One-dimensional nearest neighbor cellular automata defined over Z 2 are 
characterized in terms of a set of eight nonadditive basis operators which act on 
the automaton state space. Every evolution rule for such automata can be 
expressed as an operator which is a direct sum of the basis operators. This 
approach allows decomposition of automata rules into additive and nonadditive 
parts. As a result, it is simple to determine fixed points (those states for which 
the rule reduces to the identity), and shift cycles (sets of states on which the 
rule reduces to a shift). Sets of states on which any given nearest neighbor 
automaton reduces to an identity or a shift are characterized. This allows us to 
obtain some results on the entropic properties of nonadditive automata, 
although these are not nearly so complete as results obtained for additive 
automata. 

KEY WORDS: Cellular automata; fixed points and shift cycles; entropy 
reduction. 

1. I N T R O D U C T I O N  

O n e  of  the  bas ic  q u e s t i o n s  wh ich  arises in the s tudy  of  ce l lu la r  a u t o m a t a  

is to d e t e r m i n e  the i r  f ixed po in t s  and  cycl ing  behav io r .  As it t u rns  out ,  

cycl ing  b e h a v i o r  is pa r t i cu l a r l y  difficult  to  cha rac t e r i ze  and  even  such 

i m p o r t a n t  p a r a m e t e r s  as m a x i m u m  cycle p e r i o d  are, in genera l ,  u n k n o w n ,  

a l t h o u g h  u p p e r  b o u n d s  h a v e  been  ob t a ined .  ~ 3) 

F o r  finite, o n e - d i m e n s i o n a l ,  neares t  n e i g h b o r  a u t o m a t a  the  q u e s t i o n  of  

m a x i m u m  p e r i o d  has  usua l ly  been  p o s e d  in the  fo rm:  " g i v e n  a pa r t i cu l a r  

a u t o m a t o n  rule,  the  n u m b e r  of  cells, a n d  specif ied (usual ly  p e r i o d i c )  

b o u n d a r y  cond i t i ons ,  w h a t  is the  m a x i m u m  cycle p e r i o d ? "  W i t h  this 

a p p r o a c h ,  i t  has  been  s h o w n  ~1 3) tha t  for  an  add i t ive  a u t o m a t a  def ined  o v e r  
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Zp (p prime), with n cells and periodic boundary conditions, the maximum 
cycle period b(n) divides the number b*(n) defined by 

( pk _ pm 

b*(n)=min ((pt pro)no (1.1) 

where n = pmn o, p does not divide no, and k, l are the smallest integers 
such that, respectively, p k = p m  mod(n) and pl= __pro mod(n). Note that l 
does not always exist (e.g., for p = 2 and n = 7). 

It is also known ~l'z) that the periods of all cycles divide the maximum 
period b(n). In many cases it is true that b(n) = b*(n), but there are notable 
exceptions (e.g., see the table of maximum cycle periods in ref. 1 ). Jen ~z) has 
shown that these exceptions are a result of the fact that certain values of 
n allow "anomalous shifts" which act to reduce maximum cycle period. 

In an excellent paper Jen ~2) has also turned the maximum period ques- 
tion around, asking it in the form: "given a number b(n), for what values 
of n will this be the cycle period for a specified automaton rule?" She 
provides answers to this question in terms of recursion relations over finite 
fields. In addition, she shows the fundamental role of shifts in automata 
cycles: if the state space for a one-dimensional automaton with n cells and 
periodic boundary conditions is denoted E, ,  then the automaton evolution 
rule has a natural expression as an operator Q: E n ~ E , ,  and the 
automaton will be denoted (Q, E,). Taking a -1 as the right shift operator 
on E, ,  we can state Jen's result on the role of shifts as follows. 

T h e o r e m  1 .(3) A state # e E n lies on a cycle of an additive cellular 
automaton (Q, E,)  if and only if there exist r, s such that Q~(#) = a-s(#) .  
[We note that r =  b(n), s= n is a possibility.] 

The fundamental role of shifts in the construction of cycles for cellular 
automata raises the question of shift cycles; i.e., cycles on which an 
automaton rule acts as a shift. In this paper an approach to cellular 
automata in terms of a set of "orthogonal" operators which span the 
automata rule space is used to determine and classify fixed points and shift 
cycles for all nearest neighbor cellullar automata with periodic boundary 
conditions, defined over Z2. We also indicate how this approach may be 
extended to non-nearest-neighbor automata, to automata defined over Zp 
(p prime), and to higher-dimensional automata. 

2. FINITE NEAREST N E I G H B O R  CELLULAR A U T O M A T A  W I T H  
PERIODIC B O U N D A R Y  C O N D I T I O N S  

Jen (2) terms these automata cylindrical, since their time evolution is 
most naturally represented on a cyclinder. In ref. 3 a detailed study of these 
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automata has been carried out, based on a formalism which is briefly 
reviewed here. 

If the automaton rule is such that the value in cell i at time t + 1 
is determined only on the basis of the values in cells i -  1, i, and i +  1 at 
time t, then the automaton follows a nearest neighbor rule. Denote this 
automaton (Q,E,). If, for all #, t t 'eEn,  Q(#+t t ' )=Q( t t )+Q(# ' ) ,  the 
authomaton rule is said to be additive. 

If #i denotes the ith component (i.e., the value in cell i) of a 
state it, then the general component form for the action of the operator 
representing an additive nearest neighbor rule is 

# i ( t+  1)=  [Q(#(t))]i=xtt  , ~(t)+ ytt~(t)+z#i+,(t) (2.1) 

where x, y, z e Z2 and all sums and products are reduced mod(2), while all 
component indices are reduced mod(n). 

The state consisting of all O's will be indicated by 0 and the state 
consisting of all l 's by 1. 

Equation (2.1) defines eight distinct additive operators, including the 
trivial zero operator which maps all states to 0. I f / ,  a, and a-~ denote, 
respectively, the identity, left shift, and right shift on En, then (2.1) is 
equivalent to the operator equation 

Q =xa  -1 + y I + z a  (2.2) 

The explicit forms for the nontrivial additive nearest neighbor operators 
are given in Table I, using the labeling scheme initiated by Wolfram. (4) 

In order to include nonadditive operators, we define a set of eight non- 
additive operators on E,  corresponding to the automata labeled 128, 64, 
32, 16, 8, 4, 2, and 1 in Wolfram's catalogue. Definitions of these operators 
are provided in Table II. 

Table I. Nearest Neighbor Additive Cellular Automata Over Z 2 

(x, y, z) Operator Component  Form Rule 

(0, 0, 0) 0* [0"(~)],= 0 o 
(1, 0, 0) a - i  [a-1(/~)]  i = # i -  i 240 
(0, 1, 0) I [ I ( /z) ] ,=  #, 204 
(0, 0, 1) a [ a ( t t ) ] , =  it,+ 1 170 
(1, 1, 0) D [ D - ( t t ) ] ~ =  #,_1 +tt~ 60 
(0, 1, 1) D [D(ll)]i=#i-t-lli+l 102 
(1, 0, 1) 6 [5 ( t t ) ] ,=  #i_1 + t t i+ l  90 
(1, 1, 1) A [ A ( t , ) ] i  = # , _  1 + m + ~ i+  1 150 
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Table II. Basis Operators for Canonical Representation 

Automaton Operator Rule 

128 z [111 } ~ 1, all others ~ 0 
64 fl+ {110} ~ 1, all others ~ 0  
32 O [-101 } ~ 1, all others ~ 0 
16 r/ {100} --. 1, all others ~ 0  
8 fl {011 } --* 1, all others ~ 0 
4 t [101 } ~ 1, all others ~ 0 
2 r/+ {001 } ~ 1, all others ~ 0 
1 x [000 } ~ I, all others ~ 0 

Since whenever a site maps to 1 under one of these operators  it maps 
to 0 under  the remaining seven, there is no interference, and every operator  
representing a nearest neighbor  rule over Z2 can be uniquely expressed as 
a direct sum of these eight operators.  That  is, the operators of  Table II  
provide a basis for the nonlinear algebra of operators  defined by the set of 
nearest neighbor  rules over Z2. Expression of an opera tor  Q in terms of 
these basis operators  will be called the canonical  representation of Q. 

To determine the canonical  representation of an operator,  its numeric 
label is written in powers of 2 and the appropria te  substitutions are made 
from Table II. For  example, the canonical  representation of  rule 176 is 
obtained via 176 = 128 + 32 + 16 = t / -  + Z + 0. For  further properties of 
these basis operators  the reader is referred to ref. 3. 

The main results of  this paper  are based on the canonical  representa- 
tions of  the seven nontrivial  additive operators.  These are given in 
Table III.  

Canonical  representations, both additive and nonadditive,  can be 
added with coefficients reduced mod(2).  For  example, 

D = I + a = ( f l +  +f l -  +Z+t )+( f l  +rl+ +O+z)=fl+ +q+ +O+t 

This means that every nearest neighbor rule can be decomposed into an 
additive and a nonadditive part, al though it turns out  that  this decomposi-  
tion is not  generally unique. We will be particularly interested in those 
cases in which the additive par t  of a rule is the identity, or  a shift. 

If  Q* is a nonaddit ive opera tor  with decomposi t ion Q*=Q+F,  
where Q is an additive operator ,  and if Q* reduces to Q one some non- 
empty subset of En-{0, 1}, the decomposi t ion will be called legal. If  the 
canonical  representat ion of Q* contains ~c, then Q* will be said to be 
generative. For  simplicity, considerations are restricted to nongenerative 
rules. 
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Automaton Operator Rule 

0 0* All map to 0 

170 a = f i -  +q+ + O + ~  [001,001, 101, 111} ~ 1 
{110, 100, 010, 000} ~ 0  

240 a -~=f l++r /  + O + z  [100,100,101,111} ~ 1  
{011,001,010, 000 } --, 0 

204 l=f l+ +fl + Z + t  [011,110,111,010}--.1 
{ 100, 001, 101,000} --,0 

102 D=f i  ~ +r/+ + 0 + ~  [_110,001,101,010} ---, 1 
{011, 100, 111,000} ~ 0  

60 D-  = fl- + r/- + 0 + z [011, 100, 101,010} --* 1 
{110, 001,111,000} 4 0  

90 3=f l  + + f l -  +q+ + t / -  {110, 011,001,100} ~ 1 
{101, 111,010, 000} ~ 0  

150 A =t/+ +r / -  +Z+~ [001, 100, 111,010} ~ 1 
{110, 011,101,000} --*0 

Canonical representations, together with their legal decompositions, 
are listed in the Appendix for all nongenerative nearest neighbor rules 
over Z2. 

3. FIXED POINTS A N D  SHIFT CYCLES 

Suppose that Q* is a nongenerative, nonadditive automaton with legal 
decomposition Q * = Q + F ( f l  +-, tl +-, O, z, l) with Q being I, a, or a -1. We 
ask the question of what constraints must be satisfied by a state ~ if the 
equation Q*(/L) = Q(/t) is to be true. That is, we look for the subset of E, 
which maps to 0 under F. 

For given Q* the set of all legal decompositions partitions into four 
subsets. The first consists of those automata for which Q* reduces to Q 
only on a highly restricted subset of E,.  These decompositions will be 
called weakly legal. The nonadditive part F in a weakly legal decomposi- 
tion will contain combinations of basis operators which include fl -+ + t/+-, 
r/+ + Z, or t/-+ + Z + z. The full set of weakly legal nongenerative operator 
forms are listed in Table IV. 

The forms listed in Table IV reduce to Q either on states 0_[ and 10 
(underlining indicates repetition) (subset a; requiring n even); on states 
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Table IV. Weakly Legal Nongenerative Operator Forms 

(a) Weakly legal forms which reduce to Q only on 10 and 01: 
Q+/~+ +~t- 
Q+,8 +r/+ 
Q+,8+ +r/+ 
Q + ,8- + r I- 
Q+fl+ +13 +rl + 
Q+/~+ +/~- +q-  
Q+,8+ +rl+ +q 
Q + ~  +~t+ +rt - 
Q+/~+ +/~- +q+ +~/ 
Q+~+ +rl- + Z 
Q+fl +rl++X 
Q+,8+ +~l+ +q 
Q+f l -+ r /++z  
Q+//+ +/~- +~+ +z 
Q+/~+ +fl + q - + z  
Q +/~+ +r/+ + ~/ +Z 

Q+/~- +rt+ +~-  +z 
Q+]~+ +/~- +q+ +r/- +q 

(b) Weakly legal forms which reduce to Q only on 110, 101, and 01__11: 
Q+q+ +z+t  
Q+q +Z+t 
Q+rl+ +q +Z+t 

(c) Weakly legal forms which reduce to Q only on states with single or double l's separated 
by isolated O's: 
Q+q++z  
Q+q +z 
Q+rl++q+Z 

110, 101, and 011 (subset b; requiring n =  3m); or on states consisting of 
single or double l's separated by isolated O's (subset c). 

The remaining three subclasses of Q-decompositions are given in 
Table V. 

Operators in subclass A reduce to Q on the set of states having only 
isolated ones (those involving/~ + ), or only isolated zeros (those involving 
q+). Operator forms in subclass B reduce to Q on states having only 
isolated ones separated by two or more zeros (those involving/~ -+ ), or only 
isolated zeros separated by two or more ones (those involving r/+ ). The 
constraints are more complicated for subclass C: no isolated zeros (Q + 0); 
no isolated ones (Q + 0; no isolated zeros or ones (Q + 0 + t); only single 
or double ones (Q +g ) ;  only single or double ones, and no islated zeros 
( Q + 0 + z ) ;  only double ones ( Q + z + 0 ;  only double ones, and no 
isolated zeros (Q + 0 + g + l). 
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Representation Constraints for linearity in E n -  {0, 1 } 

A. Q+/~+ 

B. 

Q+/~-  
Q + / ~  +/~ 
Q + / ~ + + z  
Q+f l  +Z 
Q+~++~-+Z 

Q+~I + 
Q +~l- 
Q+~l+ +rl - 

Q+t3+ +O 
Q+~-+O 
Q+/~+ + f l - + O  

Q+/~+ + O + z  
Q + / ~ - + O +  z 
Q+~++~ +O+z 
Q+rl+ +t 
Q+~l- +t 
Q+rl+ +rl +t 

C. 
Q+o 
Q + z  

Q + O + z  
Q+o+~ 
Q + z + z  
Q + O + z ~  

Reduces to Q on states with only isolated l's 

Reduces to Q on states with only isolated O's 

Reduces to Q on states with only isolated l's 
separated by two or more O's 

Reduces to Q on states with only isolated O's 
separated by two or more l's 

Reduces tpo Q on states: 
...without isolated O's 
�9 ..with only single or double l's 
...without isolated l*s 
. ..with single or double l's, no isolated O's 
... without isolated O's or l's 
...with only double l's 
...with only double l's and no isolated O's 

F o r  an  o p e r a t o r  Q * =  Q + F(fl +-, r 1 • O, Z, t) we d e n o t e  the  set of  s tates  

on  wh ich  Q* reduces  to  Q by  En(Q, F). E l e m e n t a r y  inc lus ion  a r g u m e n t s  

yield the  f o l l o w i n g  result .  

T h e o r e m  2. T h e  fo l l owing  c o n d i t i o n s  ho ld :  

A. E,(Q, arl++brl ) = l + E , ( Q ,  c f l + + d f l - + e z )  (a, b & c, d n o t  

b o t h  0)  

B. E.(Q, O) = 1 + E.(Q, l) 

C. E , ( Q , z + t ) n E , , ( Q , O + z ) = E , , ( Q , z + O ~ E , , ( Q , O + t )  

=En(Q, O+ z )nEn(Q ,  O+t)=E,,(Q, O + z + t  ) 

D. E,,(Q, O) n E,,(Q, Z) = E,,(Q, 0 + Z); 

E,,(Q, O) n E,,(Q, t) = E,(Q, O + t) 

E. E,(Q, z )~E, , (Q,  a~ + + b ~ -  +cO+dz),  a, b, c, d n o t  all O. 
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Table VI. Legal Identity Representations of Nongenerative Rules 

Weakly Legal Identity Representations: 
(a) Only lO and Ol are fixed: I+13+ +11 (156);1+13 +11+ (198);1+13++11 + (142); 
1+13-+t I-  (212); 1+13++13 +17 + (134); 1+13++fl +tl (148); 1+13++11++11 - 
(158); 1+13 +11++11- (214); 1+fl++13-+11++11 - (150); 1+13++11 +Z (28); 
1+fl-+11++g(70);1+13 + +/7 ++Z(14) ; I+13-+11.+g(84) ;1+f l  ++13 +11++Z(6); 
I + f l + + f l - + 1 1 - + Z  (20); I+fl++11++11 +g (30); I+13-+11++11 +Z (86); 
I+13++13-+11++11 +Z (22) 

(b) Only 11__.__00, 10~1, and 01__._!1 are fixed: l+11++Z+t (75); I+11-+Z+~ (88); 
1+11 + +11- + Z + l  (90) 

(c) Only states with single or double l's separated by isolated O's are fixed: I + q  + +Z 
(78); I + q-  + Z (92); 1+11 + +11- + Z (94) 

Strongly Legal Identity Representations: 
(A1) All states with only isolated l's are fixed: I+f l  + (140); I+f l  (196); I+f l  + +13 
(132);I+fl + + Z ( 1 2 ) ; I + 1 3 - + Z  (68);I+13 ++/3 +Z(4) 

(A2) All states with only isolated O's are fixed: I+11+ (206); I +  11 (220); I +  t/++q 
(222) 

(B1) All states with only isolated l's separated by at least two O's are fixed: I+/3++ O 
(172);I+fl + 0  (228);I+fl ++13 +0(164);1+13 + + 0 +  Z(44);1+13 +O+z(100) ;  
1+13 + +13- + O+ Z (36) 

(B2) All states with only isolated O's separated by at least two 1's are fixed: I+11 + +t 
(202); I + q -  +~ (216); 1+11 + +11- +t  (218) 

(C) I +  O (236) fixed points have no isolated O's; I +  Z (76) fixed points have only single 
or double 1's; I +  t (200) fixed points have no isolated l's; I+  O + X (108) fixed points have 
only single or double l's and no isolated O's; 1+ O +t (232) fixed points have no isolated 
O's or l's; l + z + t  (72) fixed points have only double l's; I + O + z + l  (104) fixed points 
have only double l's and no isolated O's 

I t  is now possible  to classify the fixed po in t  and  the single shift 
behav io r  of all neares t  ne ighbor  cel lular  a u t o m a t a  defined over  Z2. 

Table  VI lists all nongenera t ive  a u t o m a t a  having fixed poin ts  

con ta ined  in E , -  {0, 1 }. 
Table  VII  p rovides  a s imilar  b r e a k d o w n  for those  a u t o m a t a  which 

reduce to r ight  or  left shifts. Both  shifts are indica ted  in the same table,  
Since for each a - r ep resen ta t ion  of  an a u t o m a t o n  rule there is a conjugate  
a - l - r e p r e s e n t a t i o n ,  ob ta ined  by  the t r ans format ions  fl+ *--, f l - ,  t/+*-* t / - .  
The no t a t i on  (X, Y) is used to indicate  that  the a u t o m a t a  labeled X and  Y 
are conjugate .  Tha t  is, exchanging pluses and  minuses  in the canonica l  
represen ta t ion  is numer ica l ly  equiva lent  to exchanging X and  Y. 

There  are  several  special  cases: 
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1. Automata (184,226) have decompositions a l + f l + + f l - =  
a+rl  ++rl , and a + f l  + + f l - = a - 1 + ~ / + + ~ /  , indcicating that for 
automaton 184 all states having only isolated l's lie on a 1-cycles, while all 
states having only isolated zeros lie on a-cycles; with conjugate results for 
automaton 226. 

2. Automata (172, 228) have as fixed points all states having only 
isolated ones separated by two or more zeros, while all states having only 
isolated zeros separated by two or more ones lie on a- l-cycles  (228) or 
a-cycles (172). 

3. Automata (202, 216) have as fixed points all states consisting only 
of isolated zeros separated by two or more ones, while all states consisting 
of isolated ones separated by two or more zeros lie on either a 1-cycles 
(216) or a-cycles (202). Thus, automata (202, 216) may be viewed as 
complementary to automata (172, 228) in the sense that fixed points of 
(202, 216) lie on cycles of (172, 228), and vice versa. 

Theorem 3. All automata in Table VIIA-C except (100, 44), (102, 
60), (120, 106), (88, 74), (212, 142), and (84, 14) have only single shift 
cycles. 

Proof. We present a proof for the automaton 248. Proof  for all other 
cases follows a similar pattern. 

The canonical representation for 248 is f l + + f l  +r/ + 0 + ) 6  If a 
state # has only isolated l's, then the representation a - ~ + f l -  indicates 
that rule 248 acts as a right shift on #; hence # must lie on a shift cycle with 
period dl n, where d is the spatial period of #. 

On the other hand, suppose that # contains a string of ones of the 
form . . . .  011...110 .. . .  After a single iteration of the automaton rule, this 

Table VII. Legal Single Shift Representations of Nongenerative Rules 

Weakly Legal Single Shift Representations: 
(a) Representations which reduce to shift only on 10 and 0t: 
250 ~r+fl++r/ = a  ~+,8 +r/ 
160 a + f l -  +q+ = a  - l  + fl+ +r l -  
232 a+/~ + +~/+ = a  - l + f l -  + r / -  
178 a + f l -  + 7 -  = a - l  + l 1+ +~1 + 
122 or+/? + +r / -  + g = a  - l + f l -  +r/+ +)~ 
32 a + f l -  +q+ + Z = a - * + f l +  + q -  +X 

104 a + ~ + + q + + Z = a - l + f l  +~1 +Z 
5 0  O- ~-  1~ -- -1- 71 "q- ~ = O" -- 1 -1- j~ + -1- ~ + -t- X 

(176,162) a + / ~ - + t / + + r /  , a  l + f l + + r / + + r /  (see also Al below) 

Table continued 
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Table VII. (Continued) 

(b) Representations which reduce to shifts only on 110, 101, and 011: 
(102,60) a+fl++fl + Z + ~ = a  ~+r/++~/  + ~ + z = D  

a+rl++~l +)~-t=a l+f l++f l -+Z+t=D-  
(44,100) a+rl++Z+t,a-l+rl-+Z+l 
(62,118) a+~l-+Z+t,a-l+rl++Z+l 

(c) Representations which reduce to shifts only on states with single or double l 's and 
isolated O's: 
(40,96) a+q++)~,a l+t I +)~ 
(58,114) a + q  + Z , a  l + q + + X  

Strongly Legal Single Shift Representations: 
(A1) Representations which reduce to shifts on states with only isolated l's: 
(234,248) a + fl+, a-~ + fl 
(162,176) a+fl- ,a l+fl+ 
(106,120) a'+'fl+~-Z, lT-l~-fl ~-Z 
(34,48) a+fl-+Z,a- l+f l++ x 

(A2) Representations which reduce to shifts on states with only isolated O's: 
(168,224) c r+r /+ ,a  1 + r / -  
(186,242) a+r 1 ,a - i+q  + 

(A3) Special cases: 
(226,184) a+fl+ +f l -=a ~+~l+ +tl-,a-l+fl+ +fl-=a+q+ +tl 
(98,56) a+fl++fl-+Z=a ~ + q + + r T - + Z , a  l+fl++fl-+Z=a+rl++rl-+Z 
(226 is a left shift on states with only isolated l's, and a right shift on states with only 
isolated O's; and vice versa for 184; 98 is a left shift on states with only isolated l's, and a 
right shift on states with single or double l 's and only isolated O's, and vice versa for 56) 

(B1) Representations which reduce to shifts on states with only isolated l 's separated by 
at least two O's: 
(202,216) a+fl+ +O,a l.~_fl _]_• 
(130,144) Cr+fl + O ,  c r - l + P + + O  
(74,88) a+fl++O+g,a l+ f l -+O+ Z 
(2,16) a+fl +O+)~,a-~+fl++O+z 
(66,24) a+f l++f l -+O+g,a- l+f l++f l -+O+g 

(B2) Representations which reduce to shift on states with only isolated O's separated by 
at least two l's: 
(168,224) a + q +  +z, a - x + ~ / -  + t  
(186,242) a + q - + z ,  tr l + r / + + t  
(230,188) tr+q++rl-+l,a l + ~ / + + r / - + t  

(C) Reduce to shifts on states with: 
(138,208) a+O,a-~+O . . .no isolated 0's 
(42,112) a+Z,a-~+X ... only single or double l 's 
(174, 244) a + ~, a -1 + 1 . . .no isolated l 's 
(10,80) a + O + z , a - I + O + z  ... single or double l's, no isolated 0's 
(142,212) a+O+l ,G- l+O+l  . . .no isolated 0's or l 's 
(46, 116) a+Z+~, tr-l+Z+t . . .only double l 's 

+ O + Z + 1, a -  l + t9 + ~ + t ... only double l's, no isolated O's 
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becomes either ...111... 111... or ...011...111 . . . .  That is, the length of this 
string has irreversibly increased by at least one. Thus any # containing two 
or more adjacent one's will eventually iterate to the fixed point 1. | 

For  automata in classes A and B of Table V, there is a simple recur- 
sion relation which gives the number of states on which the rule reduces to 
the additive operator Q. Let Sn(r; s) stand for the subset of En consisting 
of states composed of blocks of exactly r ones separated by blocks of s or 
more zeros. 

I . e m m a  1. Let Nn(r;s) be the number of elements contained in 
Sn(r;s). Then, for 1 ~<m<r,  Nn(r;s)=Nn(r-m; s+m). 

L e m m a  2. Nn+l(1;s)=Nn(1;s)+N~_s(1;s)+ 1. 

We note that if the roles of l's and 0's are interchanged in the above 
lemmas, the results still obtain. 

Corollary. For n > l  the number of states in En having only 
isolated ones, or only isolated zeros, is given by L , -  1, where Ln is the nth 
Lucas number. 

Proof. By Lemma2,  N,+I(1;1)=Nn(1;1)+N, 1(1;1)+1.  Add 
one to each side of this equality: N , + 1 ( 1 ; 1 ) + I = ( N n ( 1 ; 1 ) + I ) +  
(Nn_l(1; t ) +  1). This is the Fibonacci recursion relation. We compute 
NI(1; 1 ) = 0 ;  N2(1; 1 )=2 ;  hence the sequence of numbers Nn(l; 1 )+  1 is 1, 
3, 4, 7, 11, 18, 29,..., and this is the Lucas sequence. | 

These results allow enumeration of fixed points, or states on cycles for 
all those automata in subclasses A and B in Tables VI and VII, and those 
in subclass C having the form Q + Z + z or Q + 0 + z + z, excepting those 
automata listed in Theorem 2, which have cycles other then single shift 
cycles. 

4. A F E W  R E M A R K S  ON E N T R O P Y  

In several papers the entropy-reducing properties of cellular automata 
have been studied. (1' 4-6~ Roughly, if all automaton states are considered as 
having equal initial a priori probabilities, then as the automaton evolves, 
certain states will become forbidden. That  is, during the time evolution of 
automata for which not all states lie on cycles, the probability of certain 
states will become 0, while the probabilities of other states will increase. 
For  example, "Garden of Eden" states, those which have no predecessors 
unbder the given automaton rule, have probability 0 after a single iteration. 
In general, if a(n) is the maximum number of iterations required to reach 
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a fixed point or cycle, then, after at most a(n) steps, all remaining 
accessible states will be fixed points, or lie on cycles. 

For additive nearest neighbor automata over Zp a complete analysis 
of entropy-reducing properties, for the normalized measure entropy, 
has already been given(6): If Q is such an additive operator, then the 
normalized measure entropy, defined by 

S(t)=-(nlogzp) 1 E P,(#)log2P,(la) (4.1) 
~t e En 

where Pt(#) is the probability of state # after t iterations of Q. S(t) satisfies 
the entropy evolution formula 

S(t)={1-tv(Q')/n, O<.t<a(n) 
1-a(n)v(Q')/n, t>~a(n) (4.2) 

where a(n) is the maximum number of iterations required to reach a cycle 
(for n = pmn o this is usually pm); Q, is the matrix representation of the 
operator Q, i.e., the n x n right circulant matrix with first row (y, z; 0,..., x) 
with x, y, and z as defined in Eq. (2.1); and v(Q') is the nullity of this 
matrix. 

The fractional change in S(t) per time step when t < a(n) is given by 
a l ( s ( t +  1 ) - S ( t ) ) = - v ( Q ' ) / n a ( n ) .  Thus, the nullity of the matrix Q' 
appears as a discrete analogue of the rate of change of entropy. It describes 
the rate at which the state space "loses dimensions" as the operator is 
iterated. 

Formulas for the nullity of the various nearest neighbor additive 
operators are given as follows. 

Theorem 4. 

v(D (y,z)) = v(D (x, y)) = { O 

Ii F/even, 
v(6(x,z)) = n odd, 

otherwise 

{P2 A ,+ ,  =1  , 
v(A (x. y,z)) = otherwise 

The following relations hold: 

( p -  z l y ) , _  1 mod(p) 
otherwise (4.3) 

( p - z  ~x) n -  1 mod(p) 

( p - z - i x )  " -  1 mod(p) (4.4) 

Bn+I=O 
(4.5) 

where the operators are generalizations of the additive operators defined 
over Z2, given in component from by 
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[D(y.~)(#)]i = y#i + z#~+ 1 

[ D ( - y , z ) ( # ) ] i : x # i  l -k  Y#i  

[6(x,z~(#)] ,=x#,  , + z # , + ,  

[a{x.y.~)(#)]i=x#, 1 + y # , + z # i _  i 

and the terms Ai and B~ in (4.5) are defined by taking A ~ = B 2 =  1, 
Az = B~ = 0, while for i~> 3, with {a} the least integer greater than or equal 
to a, and/-/(k)j the j t h  entry in the kth row of the mod(p)  Pascal triangle, 

{(i 3)/2} 
A i =  2 H ( i - j - 2 ) t n - - Z  l X ) J + I ( P - - Z - I Y )  i - 2 j - 3  ~'i  2j 2 ~,k" 

j=O 
{(i-  2)/2} (4.6) 

Bi = ~ r t ( / - j - 1 ) t , , _  z - l y ) i  2j 2 ..i__2j__l ~,p " z - l c ) J ( p  - 
j = 0  

subject to constraints A,+I  = 1, Bn+~= 0. {6) 
As a result of this theorem, only certain cellular automata are seen to 

decrease entropy, namely those for which v ( Q ' ) # 0 .  By (4.2) the entropy 
for these automata, with n = pmn o and a ( n ) =  pro, evolves according to the 
formula 

s ( t )  = c ~ t tv(Q') /pmno 

1 - v(Qr)/no 

O ~ t < p  m 
(4.7) 

pm <~ t 

and the final value of this entropy is independent of m. 
For  nonadditive automata, even restricting the field of definition to 

Z2, the situation is far more difficult and no general formula for the time 
evolution of entropy has been found. The reason behind this is that 
additive automata have the property that all trees rooted on cycles or fixed 
points of the state transition diagram have the same height. (*) This is not 
generally true for nonadditive automata, and so case-by-case analysis is 
required. It is possible, however, on the basis of the results presented in 
Lemmas 1 and 2, to compute results for the final entropy of certain of 
those automata listed in classes A and B of Table V, namely, for those not 
exclulded by Theorem 3; and for those in class C having the form Q + X + z 
and Q + O + z + t .  For t>>.a(n), from (4.1) 

S ( t  >>. a(n))  = - n -  1 log2 N (c) (4.8) 

where N (c) is the number of states which are fixed points or lie on shift 
cycles. This is determined from Lemmas 2 and 3, with the addition of 1 to 
include the fixed point 0, and another 1 if 1 is also a fixed point. 
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Two examples will illustrate this. From the Appendix, rule 184 has 
decompositions ~-1 + fl + + fl and ~ + t/+ + q . Thus, on states having 
only isolated l's this rule acts as a right shift, while on states having only 
isolated O's it acts as a left shift. From the corollary to Lemma 3 the 
number of such states in each case is L n - 1 .  We also see that both 0 
and 1 are fixed points and these are the only fixed points. Thus, the total 
number of states which are fixed points or are on cycles for this automaton 
rule is given by 2 ( L , - 1 ) + 2 = 2 L n  and the final entropy is given by 
n l ( l og2Ln+ l ) ,  where Ln is the nth Lucas number. Since the initial 
entropy has been normalized to 1, the maximum change in entropy in this 
automaton's evolution is 1 - n -  1(log2 Ln + 1 ). 

As our second example, rule 48 has decomposition a - 1 + / 3 + + 0 .  
Again both 0 and 1 are fixed points. In addition, all states having 
only isolated l's separated by two or more O's are on shift cycles. No 
other states are fixed points, on are on cycles. Thus the final entropy 
is n - l l o g 2 ( N n ( 1 , 2 ) + 2 )  and the maximum reduction in entropy is 
1 - n  ~ logz(Nn(1, 2 ) + 2 ) ,  where N,(1, 2) is the nth term in the sequence 
defined by the recursion relation of Lemma 3. 

5. D I S C U S S I O N  

The purpose of this paper has been to introduce a natural formalism 
for one-dimensional nearest neighbor cellular automata in terms of a basis 
set of eight nonlinear operators, and to use this formalism to determine 
significant properties such as fixed points, shift cycles, and entropy- 
reducing properties. This approach can be extended to more general 
cases as well. It is only necessary to write out the appropriate set of basis 
operators, and to express additive operators of interest (e.g., shift and the 
identity) in terms of these basis operators. The only difficulty which arises 
is that the number of basis operators grows exponentially. For  example, 
for a one-dimensional neighborhood of radius 2, or for a two-dimensional 
yon Neumann neighborhood, there are 25= 32 basis operators and a total 
of 232 evolution rules. 

A general problem with this approach is that it is difficult to compute 
cycle behavior other than shift cycles because of the nonlinear nature of the 
formalism. That is, Q*(# + I~') ~ Q*(#) + Q*(~'), hence iteration formulas 
cannot be easily computed. 

Jen (2) has shown that all cycles will be multiple shift cycles, so one 
approach may be to study equations of the form Q*k(kt ) = o-r(#) in order 
to determine, for any given Q*, the values of k and r for which nontrivial 
solutions exist. 
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Another possible approach which shows some promise is to consider 
neighborhoods of size 2r+  1 ( r=  1, 2,...), defining nonlinear operator for- 
malisms for each, and constructing an embedding of 2r + 1 neighborhood 
rules into 2(r + 1 )+  1 rules. Whether the payoff from such a program is 
worth the computational effort involved remains to be seen. 

APPENDIX.  LEGAL REPRESENTATIONS OF 
NONGENERATIVE A U T O M A T A  

We list canonical representations and legal decompositions for all non- 
generative nearest neighbor automata defined over Z2. In each case the 
canonical representation is listed first. An asterisk at the far left indicates 
an additive automaton. The decimal designation for each automaton is 
given at the fat left. If the automaton is not self-conjugate, the decimal 
designation for its conjugate automaton is listed in the next column. 

The set of all nearest neighbor generative automata over Z2 is 
obtained by adding ~c to each to the representations of this table, and 
adding 1 to the corresponding decimal designations. 

Automaton 
and conjugate 

automaton Canonical representation and legal decompositions 

0 
2 16 
4 
6 20 
8 64 

10 80 
12 68 
14 84 
16 2 
18 
20 6 
22 
24 66 
26 82 
28 70 
30 86 
32 
34 48 
36 
38 42 
40 96 

r/+, cr +/3-  + O + Z, 6 +/~+ +/~ +~/ - ,A + r / -  + Z + z  
t, I+/3+ +/3 + Z , A + r / +  + q -  +X 
rl+ +t,l+/3+ +/3- +q+ +z,D+/3+ +O,A+rl- +Z 
/~-, 6+ /3+  + n +  +rt  - 
/3- + q+, a +  O+Z,  6 +/~+ + r / -  
/~- +t ,  I+/3+ +Z, A +/~-  +r/+ + q-  +Z 
/3- +q+ +t,a+O+?:+z,l+/3+ +n+ +z,D+/3+ +/3- +O, zl+/3 +n- +?: 
q-,a-l+/3+ +O+z, 6+/3+ +13- +~l+,A+q+ +Z+t 
q++~/ ,6+ /3+  + /3 - ,A  + Z + t  
q-+z,l+/3++/3-+q +z,D +/3-+O,A+~++Z 
rl+ +tl- +t,I+/3+ +/3- +rl+ +rl+ +z,A+ Z 
[3-+~t-,a-l+t3++/3-+O+z,D + O + ~ ,  6+/3+r/+ 
/3 +rt+ +r / - ,  6 +/3 + 
/3- +tl- +t,I+fl+ +tl- +z,D-  +O, zl+fl +q+ +Z 
/3-+rl++q +t,l+fl++tl++q-+Z, ZJ+fl-+Z 
O,a+ /3  + q + + Z , ~ r - l + / 3 + + r /  +Z 
q++O,a+~-+Z,a- l+f l++~++q +Z 
O+t,I+fl++fl +O+x,D+/3++q+,D-+fl +t 1- 
q++O+t,D+/3+,D +/~-  +q+  + q -  
/~- + O, a +  q+ +Z, ~-1 +fl+ + f l -  + q  + z , D - + q - + z  

Table continued 

822/66/5-6-15 
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Automaton 
and conjugate 

automaton Canonical representation and legal decompositions 

42 112 
44 100 
46 116 
48 34 
50 

52 38 
54 
56 98 
58 114 

* 60 102 
62 118 

64 8 
66 24 
68 12 
70 28 
72 
74 88 
76 
78 92 
80 10 
82 26 
84 14 

86 30 
88 74 

* 90 
92 78 
94 
96 40 
98 56 

100 44 
* 102 60 

104 
106 120 
108 
110 124 
112 42 
114 58 
116 46 
118 62 

[3-- }_~]+~_O,  0.__X, 0. 1 . ~ [ 3 + ~ _ [ 3  + r / + + q - + z , D  + r / + + q - + t  
[3- +O+~ ,a+~ /+  +Z+~, 1+[3 + +O+)~,D+[3 + +[3- +r/+, D -  +t/ 
[3-+q+ +O+t ,a+z+t ,D+f l+  +f l - ,D +rl+ +q - 
q-+O,a+[3-+~l++q + z , a - l + f l +  +Z 
q + -~- ~ -- -~- O ,  0- --~- [3-- -}- ~ -- -r- Z, O- 1 -.~- [3 + -~- i'/+ -~- %, 6 .§ [3 + -I- [3-- -t- O ,  

A + O + z + z  
~l- +O+l,D+[3+ +q+ + q - , D -  +[3 - 
rl++rl +O+t,D+[3++tl- ,D +[3-+rl+,A+O+z 
[3-+tl -+O,a+q++tl-+Z,a- l+[3++[3 + z , D - + t  
[3-  q- rl + -l- tl - -.k O ,  ff -}- ~l + Z, a l + fl + 4- [3 -  -l- rl + q- z ,  D . - [ - q + q - t ,  

5+[3§ 
[3- +rl- + O + t , D -  
[3-+rl++q-+O+t,a+~l-+Z+l,D+[3++fl  +q ,D-+rl  +, 
A+[3- + O + z  
[3+,6+[3- +rl+ +q - 
[3+ +rl +, a+fl + +[3- +0+)~, D+O+z, 6+[3- +rl 
fl++~,I+fl + z , A + f l + + ~ + + q - + Z  
[3+ +rl + +~, 1+[3- +rt + +~,D+O, A +fl+ +0- +X 
[3+ +[3 , I + z + z , f + r l  + + q -  
[3++[3 +q+,a+[3+ +O+z, l+t l+ +Z+t, 6+rl 
fl++fl +z , l+z, f+q++tT-+~,A+[3++[3-+tl++tl -+Z 
[3+ +[3- +q+ +t, l+q + +Z, D+fl -  +O, ~ +r / -  +~, A +,6 + + f l -  + r / -  +Z 
[3§ +q- ,a-~ +O+ z, f+[3- +q + 
[3+ +rl+ +rt , , 5 + 3 -  
[3++q +z,a ~ + O + z + t , I + [ 3 - + r l - + z , D  +[3*+[3-+0, 
A+[3+ +q+ +X 
[3+ +~+ +~1- +1, l+f l -  +rl* +rl- +~,A +[3§ +~ 
[3"- +fl- +rl- , a-~ +[3 - + O + z , l + r  1- +Z+t,b+rl + 
[3++[3 +~+ +~ ,~ 
[3++[3 +tl +~,l+rl- +x ,D-  +[3+ +O, 6+~l+ +t,A+[3+ +fl- +~l+ +Z 
[3+ +fl- +~l+ +rl- +t,l+q+ +q- +;(,f+t,A+fl+ +fl +Z 
[3+ +o, a+[3 + +[3- +rl + + Z, a -~ +rl- +Z, D+rl + +t 
[ 3 + + q + 4 _ O ,  G 4 y [ 3 + q _ [ 3 - q _ Z , a  1 + ~ + + ~  + z , D + t  
[3" +o+z, a -~+~1- +Z+t, 1+[3- +O+ z, D+rl +,D- +fl+ +fl- +O- 
[3+ +rl+ +O+~,D 
3 + + 3 -  +O, a+[3 § +rl + +Z,a-~+fl - +q-  + Z , I + O + z + z  
[3+ +[3- +ri + +O,a+[3 § + Z , a - ~ + [ 3 -  +q+ +r t -  +Z 
fl+ +fl- + O + t , l + O +  z ,D+f l -  +tl+,D- +[3+ +q - 
[3++[3 +~+ +O+l~:,D+[3 ,D +fl+ +tl+ +~l - 
f l + + q - + O , a + f l + + f l - + ~ l + + q - + Z , a - ~ + z , D + q + +  q +1 
[3++~l++tl-+O,a+[3++[3-+q-+Z,a-~+q++z,D+ q +t, 6+[3-+0 
[3+ +q- +O+~,a-~ +Z+~,D+rl+ +q ,D-+[3++[3 - 
[3§ +O+t ,a  ~+q++Z+t,D+rl- ,D +f l ++[3 -+ r / + ,  

A+f l++O+~ 

Table continued 
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Automaton 
and conjugate 

automaton Canonical representation and legal decompositions 

120 106 
!22 
124 110 
126 

128 
130 144 
132 
134 148 
136 192 
138 208 
140 196 
142 212 
144 130 
146 
148 

* 150 
152 
154 
156 
158 
160 
162 
164 
166 
168 

* 170 
172 
174 
176 
178 
180 
182 
184 
186 
188 
190 

192 
194 
196 
198 
200 
202 

/3++fl-+~-+O,a+fl++q~+~-+Z,~r-t+/3 +X 
/3++/3 +q++~ +O,a+/3++~ +Z, cr i + / 3 - + ~ / + + ; ~ , 6 + O  
13+ +/3- +q- +O+t,D+/3- +q+ +rl-,D- +/3 + 
13++/3 +q+ +q +O+t,D+fl- +rl-,D- +/3+ +rl+,6+O+~, 
A +/3+ +/3 + z + O  
Z, 6+ /3++/3  + q + + r /  + Z , d + q + + q - + t  
q + + g , ~ r + / 3 - + O ,  6+ /3++/3  +r/ + Z , A + r /  +~ 

Z+ 4 I+/3  + +/3-,A +q+ +q- 
~1 + + Z + t ,  1+/3" +/3- +q+,D+/3 + + O + Z ,  A+q 
/3- +Z, 6+/3+ +q+  + q -  + Z 
/3- +q+ +Z,a+0,6+/3+ +q- +7, 
/3- + z +~,/+J~+, A +/3- +~?+ +rl 
/3- +r/+ +Z++,  a+O+t, 1+/3 + +q+, D+/3 + +/3- + O +  Z, A+/3-  + r / -  
q-+Z,a I+/3++0,6+/3++/3-+rl++z,A+q++t 
q+ +q- +Z, 6+/3+ +/3- +z,A+t 

134 q-+Z+t,I+/3++/3-+q-,D-+/3 + O + z , A + r / +  
q+ + q - + Z + z , A  

194 /3 +q +Z,a-I+/3*+/3-+O,D-+O+z+t, 6+/3++q++Z 
210 /3- +q+ +q- +Z, 6+/3+ +Z 
198 /3 +q +Z+~,l+/3 +~I+,D + O + Z , d + / 3 - + q  + 
214 /3-+q++tl-+Z+t,l+/3++q++~-,A+/3 

O+x, a+/3- +q+, cr -1+/3+ +q- 
176 ~ /++O+z ,o -+ /3  ,o- t + / 3 + + r / + + r /  

O + Z + ~  , 1+/3 + +/3-  +O,  D+/3 + +r/+ +Z, D -  +/3-  + r  1- +Z 
180 r / + + O + z + 4 D + / 3 + + z , D  +/3 + q + + r /  +Z 
224 /3 + O + z , ~ r + r / + , a  1+/3++/3 +rl ,D + r / - + Z + t  
240 /3- +r/+ + O +  g, cr 
228 /3 +O+z+t,a+rl++~,l+/3++O,D+/3++/3 + q + + g , D  +r/ +Z 
244 fi + r / + + O + g + ~ , c r + ~ , D + / 3 + + / 3  + z , D  + r /++r /  +,~ 
162 r/ + O + X , ~ r + / 3 - + r / + + r / - , c r - l + / 3  + 

rt + + r / -  + O + z ,  ~r+/3- +~/-,  ~-~+/3+ + r /+ ,6+ /3  + +/3-  + O + ~ ,  ~J + O + t  
166 q-+O+z+t,D+/3++~I++~-+z,D-+/3-+Z 

rl+ +q- +O+z+z,D+/3+ +q- +z,D- +/3- +q+ +z,A+O 
226 /3-+~-+O+z,a+q++q-,cr-l+/3++/3-,D-+z+t 
242 /3 + r / + + r /  w + O + z , a + q  , a  1+/3++/3 +~/+,D + r / + + Z + ~  
230 /3-+r /  +O+z+z,a+q++~l-+~,D+/3++/3-+rl++q +z,D +g 
246 /3-+q++q-+O+~+t,a+rl-+~,D+/3++fl-+rl-+z,D-+~++Z, 

~+/3  + O  
136 [3++Z, 6+/3 + r / + + q - + ~  
152 fl+ +rl+ +Z,a+/3+ +/3- +O,D+O+z+t, 6+/3- +q- +Z 
140 /3+ +Z+t,l+/3-,A+/3+ +q+ +q - 
156 f l + + q  +Z+t,I+/3++q ,D+O+z,~J+/3++q 

/3++/3 + z , l + t ,  6 + q + + r /  +Z 
216 /3++/3-+q++Z,a+/3++O,l+~l++46+q-+Z 

Table continued 
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Automaton 
and conjugate 

automaton Canonical representation and legal decompositions 

* 204 
206 220 
208 138 
210 154 
212 142 
214 158 
216 202 
218 
220 206 

222 
224 168 
226 184 
228 172 
230 188 
232 
234 248 
236 
238 252 

* 240 170 
242 186 
244 174 
246 190 

248 234 
250 
252 238 
254 

18++18 + Z + l , I  
fl+ +fl-+~?+ +Z+~, l+q+,D+f l -+O+ z, 3+rl + Z+l,A+fl+ +fl-+rl - 
18+ +~l- +Z,a-l  +O,,5+18- +~l+ +Z 

18+ +~l+ +~- + L 6 + f l -  +Z 
fl+ +ll- +Z+~,o'-l +O+t, 1+18- +q ,D-  +fl+ +18- +O+Z,A+18+ +q+ 
18+ +11 + +q- +Z+z, l+f l -  +q+ +q-, a +fl+ 
fl++18 +q-+.~,a-a+fl  +O,l+rl-+~,a+q++Z 
18+ +fl- +q+ +q- +Z,I+q+ +q- +t,b+Z 
f l + + 1 3 - + r / - + Z + ~ , 1 + / 7  , D - + 1 8 + + O + Z ,  6+II  + + Z + t ,  
~ + f l §  

fl+ +fl +,l+ +q- +Z+~,l+q+ +,l-,6+Z+~,A+fl+ + fl 
fl+ +0+)~, a+fl + +fl- +q+, a -~ +q-, D+rl + + Z + t  
f l + + r / + + O + Z , a + f l  + +fl- ,a  -1+tI + +tl ,D+z+~ 
fl+ + O + Z + z ,  a -I +rl- +~, l + f l -  + 8 ,  D+ t l  + +Z, D -  +18 + +18- + r  I-  +Z 
18+ +r/+ + 8 + Z + I ,  cr -1+/7 + + r / -  +z, D+Z,  D -  +fl+ +18- +r/+ + r / -  +Z 
18+ + 1 8 - + O + z , ~ + 1 8 + + r / + , a  - 1 + 1 8 - + r t  , l + O + l  
18+ +18- +tl + + 0 + z ,  a+18 +, a -1 +18- +t/+ +n-  
18+ +18- +O+ Z+t, l+O, D+18- +q+ + Z, D- +18+ +~1- + Z 
f l++fl -+q++O+Z+t,D+fl-+z,D-+18++q++~? +Z 
13++11 + O + g ,  ~ -1 
18+ +~/+ +v/-  + O + z ,  a + f l  + +18- + q - ,  a - l + q + , D + r / -  +) :+~  
18+ + r / -  + O +Z+~,  a -1 +~, D+r /+  + t / -  +Z, D -  +18+ +18- +Z 
18+ +r/+ + q -  + 0  + Z + t ,  a -1 +~/+ +z, D -  +18+ +q+  +Z, D + q -  +Z, 
~+18+ + 0  
18++18 .j_ t] - 2v O .{_ ~, ff .ac. ~ + 4_ ~ + .+. tl - ,  a 1+18- -  

18+ +18- +q+ +~- +O+z,a+18+ +~l , a -1+18  +~1+,6+0+X 
fl+ +fl- +q- +O+x+,,D+18- +~l+ +rl+ + l , D -  +fl+ +) , 
f l++18-+q++q-+O+x+, ,D+18-+~l-+) , ,D +fl+ +r/+ +Z, 
3+O+z+z,A+18+ +fl- +O 
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